23,217 research outputs found

    Generation of non-Gaussian statistics and coherent structures in ideal magnetohydrodynamics

    Get PDF
    Spectral method simulations of ideal magnetohydrodynamics are used to investigate production of coherent small scale structures, a feature of fluid models that is usually associated with inertial range signatures of nonuniform dissipation, and the associated emergence of non-Gaussian statistics. The near-identical growth of non-Gaussianity in ideal and nonideal cases suggests that generation of coherent structures and breaking of self-similarity are essentially ideal processes. This has important implications for understanding the origin of intermittency in turbulence

    Intermittency in passive scalar advection

    Full text link
    A Lagrangian method for the numerical simulation of the Kraichnan passive scalar model is introduced. The method is based on Monte--Carlo simulations of tracer trajectories, supplemented by a point-splitting procedure for coinciding points. Clean scaling behavior for scalar structure functions is observed. The scheme is exploited to investigate the dependence of scalar anomalies on the scaling exponent ξ\xi of the advecting velocity field. The three-dimensional fourth-order structure function is specifically considered.Comment: 4 pages, 5 figure

    Superhalogen and Superacid

    Get PDF
    A superhalogen F@C20(CN)20\rm{F@C_{20}(CN)_{20}} and a corresponding Br{\o}nsted superacid were designed and investigated on DFT and DLPNO-CCSD(T) levels of theory. Calculated compounds have outstanding electron affinity and deprotonation energy, respectively. We consider superacid H[F@C20(CN)20]\rm{H[F@C_{20}(CN)_{20}]} to be able to protonate molecular nitrogen. The stability of these structures is discussed, while some of the previous predictions concerning Br{\o}nsted superacids of record strength are doubted.Comment: 11 pages (main paper), 32 pages (supporting information), 10 figures, 10 tables, 62 reference

    Graphene/Li-Ion battery

    Get PDF
    Density function theory calculations were carried out to clarify storage states of Lithium (Li) ions in graphene clusters. The adsorption energy, spin polarization, charge distribution, electronic gap, surface curvature and dipole momentum were calculated for each cluster. Li-ion adsorbed graphene, doped by one Li atom is spin polarized, so there would be different gaps for different spin polarization in electrons. Calculation results demonstrated that a smaller cluster between each two larger clusters is preferable, because it could improve graphene Li-ion batteries; consequently, the most proper graphene anode structure has been proposed.Comment: 19 pages, 7 figures, 1 tabl

    A critical analysis of vacancy-induced magnetism in mono and bilayer graphene

    Full text link
    The observation of intrinsic magnetic order in graphene and graphene-based materials relies on the formation of magnetic moments and a sufficiently strong mutual interaction. Vacancies are arguably considered the primary source of magnetic moments. Here we present an in-depth density functional theory study of the spin-resolved electronic structure of (monoatomic) vacancies in graphene and bilayer graphene. We use two different methodologies: supercell calculations with the SIESTA code and cluster-embedded calculations with the ALACANT package. Our results are conclusive: The vacancy-induced extended π\pi magnetic moments, which present long-range interactions and are capable of magnetic ordering, vanish at any experimentally relevant vacancy concentration. This holds for σ\sigma-bond passivated and un-passivated reconstructed vacancies, although, for the un-passivated ones, the disappearance of the π\pi magnetic moments is accompanied by a very large magnetic susceptibility. Only for the unlikely case of a full σ\sigma-bond passivation, preventing the reconstruction of the vacancy, a full value of 1μB\mu_B for the π\pi extended magnetic moment is recovered for both mono and bilayer cases. Our results put on hold claims of vacancy-induced ferromagnetic or antiferromagnetic order in graphene-based systems, while still leaving the door open to σ\sigma-type paramagnetism.Comment: Submitted to Phys. Rev B, 9 page

    Electromagnetic Vacuum of Complex Media: Dipole Emission vs. Light Propagation, Vacuum Energy, and Local Field Factors

    Full text link
    We offer a unified approach to several phenomena related to the electromagnetic vacuum of a complex medium made of point electric dipoles. To this aim, we apply the linear response theory to the computation of the polarization field propagator and study the spectrum of vacuum fluctuations. The physical distinction among the local density of states which enter the spectra of light propagation, total dipole emission, coherent emission, total vacuum energy and Schwinger-bulk energy is made clear. Analytical expressions for the spectrum of dipole emission and for the vacuum energy are derived. Their respective relations with the spectrum of external light and with the Schwinger-bulk energy are found. The light spectrum and the Schwinger-bulk energy are determined by the Dyson propagator. The emission spectrum and the total vacuum energy are determined by the polarization propagator. An exact relationship of proportionality between both propagators is found in terms of local field factors. A study of the nature of stimulated emission from a single dipole is carried out. Regarding coherent emission, it contains two components. A direct one which is transferred radiatively and directly from the emitter into the medium and whose spectrum is that of external light. And an indirect one which is radiated by induced dipoles. The induction is mediated by one (and only one) local field factor. Regarding the vacuum energy, we find that in addition to the Schwinger-bulk energy the vacuum energy of an effective medium contains local field contributions proportional to the resonant frequency and to the spectral line-width.Comment: Typos fixed, journal ref. adde

    Scalar transport in compressible flow

    Full text link
    Transport of scalar fields in compressible flow is investigated. The effective equations governing the transport at scales large compared to those of the advecting flow are derived by using multi-scale techniques. Ballistic transport generally takes place when both the solenoidal and the potential components of the velocity do not vanish, despite of the fact that it has zero average value. The calculation of the effective ballistic velocity VbV_b is reduced to the solution of one auxiliary equation. An analytic expression for VbV_b is derived in some special instances, i.e. flows depending on a single coordinate, random with short correlation times and slightly compressible cellular flow. The effective mean velocity VbV_b vanishes for velocity fields which are either incompressible or potential and time-independent. For generic compressible flow, the most general conditions ensuring the absence of ballistic transport are isotropy and/or parity invariance. When VbV_b vanishes (or in the frame of reference moving with velocity VbV_b), standard diffusive transport takes place. It is known that diffusion is always enhanced by incompressible flow. On the contrary, we show that diffusion is depleted in the presence of time-independent potential flow. Trapping effects due to potential wells are responsible for this depletion. For time-dependent potential flow or generic compressible flow, transport rates are enhanced or depleted depending on the detailed structure of the velocity field.Comment: 27 pages, submitted to Physica
    corecore